ON MAKING “TONAL COPIES” OF A VIOLIN
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The author describes some physical principles that determine the changes of violin mo-
dal patterns. He illustrates these principles with empirical results showing how
variations in the distribution of mass and stiffness of violin plates change certain mode
shapes (and thus the sound radiation) of the instrument. Using results of the analysis
and experiments, the author has constructed a “tonal copy” of an old Italian violin
(Domenicus Montagnana 1740). Every natural mode of vibration (eigenmode)in the
frequency range investigated was reproduced, with only slight differences in mode
shape, and in the same spectral sequence. The author compares his copy of the Montag-
nana with a copy of a Stradivari model and finds that some eigenmodes of the

Montagnanado not appear at all in the Strad copy.

f a system is excited in one of its

natural resonances or eigenfrequen-
cies, it oscillates in a certain vibration
pattern which is characterized by anti-
nodes and nodal lines. Atany one reso-
nance, the locations of antinodes and
nodal lines do not vary. Thereisastable
mode of vibration with its definite
“standing pattern.” As two modes (and
therefore two different vibration pat-
terns) can have the same eigenfrequency,
there can be more than one vibration
pattern for each eigenfrequency in the
spectrum. The vibration pattern be-
longing to each eigenfrequency is named
its “mode shape.”

This paper continues the examination
begun in Schleske (1996) of changes in
the eigenmodes of a violin as it is being
created. The previous paper examined
eigenfrequencies. This paper deals with
the mode shapes.

Mode Shapes and Radiated
Sound

The mode shapes are responsible for
the sound radiation from a mechanical
system. One way to increase radiation
efficiency would be to increase the ratio
of bending wave length (of the plate) to
the sound wave length (in air). For the
violin this ratio is critical. The sound
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wave length of the lowest fundamental
frequency (g-string, 196 Hz) is 1.7 m.
This is far greater than the maximum
theoretical bending wave length of 35
cm (the body length of the violin). The
frequency of a sound wave of this length
is about 950 Hz. This is more than two
octaves above the lowest playing range
of the violin.

At the so called “critical frequency”
(Cremer 1981), the bending wave length
equals the sound wave length. Above
the critical frequency (as sound waves
become shorter than bending waves)
there is a sharp rise in radiation. This
can be seen in Figure 1, showing the par-
ticle movement in the vicinity of an infi-
nite plate that is excited to vibrate in
bending waves. When the bending wave
is shorter than the sound wave (left hand
side), thereisa “hydrodynamic short cir-
cuit” and therefore no radiation. When
the bending wave is longer than the
sound wave (right hand side), there is ra-
diation into the far field. (For finite
structures the critical frequency is diffi-
cultto calculate.)

The length of a sound wave in air de-
creases inversely as the frequency,
whereas the bending wave length de-
creases inversely as the square root of the
frequency (see Figure 1). Because the
sound wave length decreases relatively
faster as frequency increases, it is fortu-
nately possible to achieve a critical fre-
quency inthe playing range of the violin.

This means that finding a way to
bring down the critical frequency (in-
creasing the plate bending wave length)
can be an important way to influence
the higher eigenmodes in a tonally rele-
vant frequency range of the instrument.

The bending wave lengths depend on
the elastic properties of the violin plates
(resulting from the material properties
and construction). The challenge for the
violin maker is to achieve long bending
wave lengths by “creating” high bending
stiffnesses and low oscillating masses.
The effort to meet the challenge affects
his choice and treatment of wood and
his choice of contours, especially of the
arching. It is not sensible to widen the
outline of the violin in the cross grain di-
rection with its low Young’s modulus
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(as has been so often attempted in his-
tory). This would only promote the di-
vision into vibrating areas of opposite
phase.

For those eigenmodes of vibration
below the critical frequency (where the
sound wave is longer than the bending
wave) there is a second possibility for in-
creasing radiation efficiency. The inten-
sity of the sound radiated from an anti-
node is proportional to the square of the
volume below the surface defining the
deflection pattern of the mode of vibra-
tion. On closer consideration of mode
shapes one realizes that formation of
nodal lines divides the radiating plate
into vibrating areas having opposite
phases. Consequently, the volumes can
subtract from one another and cause a
decrease of sound radiation.

By deliberately modifying the af-
fected mode shapes, nodal lines can be
shifted in such a way that an asymmetri-
cal distribution of antinodes in opposite
phasesisachieved.

The aim is that antinodes in opposite
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phases (at maximum displacement) take
up a different amount of volume, since
the sound intensity radiated by an anti-
node is proportional to the square of the
volume under the deflection surface.
These volumes depend on the sizes and
amplitudes of antinodes. This is how
even with a critical ratio of bending
wave length to sound wave length a net
volume flow can be achieved. So radia-
tion efficiency can be increased for those
lower eigenmodes that are important to
the sonority and the “seed” of tone.

In this respect there can be a strong
difference between instruments of dif-
ferent tonal quality. Figure 2 shows the
same type of mode shape of two violins,
A being a powerful violin by Domeni-
cus Montagnana, anno 1740, and B, a
carefully made but weak sounding vio-
lin. The mode shapes (measured by
Modal Analysis with a FFT analyzer
and plotted with an interpolation pro-
gram) are quadrupole-like eigenmodes
of the corpus back plates with their typi-
cal nodal cross. In both cases the sound

Figure 2 - Increase of radiation efficiency by asymmetrical distribution of co-
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wave in air is about twice as long as the
bending wave of the plate.

The mode shape on the right hand
side (B) shows a symmetrical pattern as
to amplitudes and sizes of antinodes in
opposite phase. This promotes the
above mentioned hydrodynamic short
circuit. The player with his head in the
near field might have the impression of a
highly vibrating and radiating instru-
ment, but as those symmetrical modes
do not radiate efficiently into the far
field the audience will not have the im-
pression of a “carrying” instrument.

It is worth mentioning that the acous-
tical short circuit decreases measured ra-
diation damping and thus even increases
the mobility of vibration. As an aside,
the dominant peak that consequently
appears in a measured mobility (or ad-
mittance) curve does not tell anything
about the acoustical output.

The mode shape on the left hand side
(A) radiates efficiently. This is because
of an asymmetrical distribution of am-
plitudes and sizes of antinodes in oppo-
site phase. The one sided dominance of
the right lower bout weakens an acousti-
cal short circuit, causing a net volume
flow. A more monopole-like radiation
characteristicis achieved. The higher ra-
diation of this mode of violin A can also
be seen by comparing the loss factors be-
tween the two modes. Because of the
higher energy radiation of the mode of
violin A, the loss factor determined by
measuring the 3 dB bandwidth of the
peak of the admittance curve plot is
more than twice as high as that of violin
B, (see Figure 2).

To summarize, the radiation of the
violin depends on the ratio of bending
wave length to sound wave length and
on the volume ratio of antinodes in op-
posite phase. This emphasizes the need
to study the detailed mode shapes of the
assembled violin.

The Assembled Violin

Figure 3 shows the mode shapes of the
violin described in Schleske (1996) (up
to 1 Hz) after the final working step
(14f). The top plate is on the left hand
side and the back on the right, both

viewed from the outside. We define de-
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flections of the top and back of the cor-
pus as cophasal if they expand or com-
press the plates simultaneously. We il-
lustrate cophasal oscillations using the
same pattern (white or grey).

Some characteristics of the mode
shapes of the assembled violin will be
pointed out to show the differences be-
tween corpus modes and free plate
modes. In contrast to common belief,
corpus modes are not like cophasal
membrane vibrations. Such vibrations
would be characterized by a nodal pat-
tern running rather parallel to suff
edges. For the first corpus modes (up to
mode #8) the reality is different. Their
nodal lines leave the plates at an angle
close to 90 and enter into the other plate
through the ribs. So the first modes are
characterized by one nodal line that
runs around the corpus (symbolized by
the arrows in Figure 3). The corpus
bends and twists as a whole. If a modifi-
cation of mass and stiffness makes a
nodal point at the edges move, the other
plate will be modified in mode shape be-
cause the nodal points at the edges are
forced to correspond with each other
and to meet through the ribs.

From mode #9 on, the mode shapes
begin to have the typical characteristics
of the so called plate modes (Miiller).
The plates begin to separate into various
“islands.” More and more the nodal
lines run parallel to the edges and thus
top and back plates begin to decouple
from each other. At mode #9 the ring
shaped nodal line on the upper part of
the back plate is still closed by making
its way through the top plate. At mode
#10 for the first time there occurs a sepa-
rate “island” (in the lower part of the

back plate).

The Free Violin Top Plate

Figure 4 shows the first seven mode
shapes of the free violin top plate after
the final working step ST 14. Hutchins
(1991) attaches importance to a tuning
of mode #1,#2, and #5. This seems well
justified by the fact that each of these
modes mainly depends on one of the
elastic parameters (Molin, Lindgren,
Jansson 1988). Observations on old
master instruments make it likely that

tap tones of at least mode #5 were used as
a guide for thickness graduation
(Méckel 1926). But the appropriateness
of this guide seems questionable as there
is no correlation between free plate tun-
ing and the frequency response of the in-
strument (see Schleske 1996).

The Free Violin Back Plate

Figure 5 shows the mode shapes of the
free back plate after its final working
step ST 13. The torsion mode, Mode #1,
is comparable with the first mode of the
top plate. Mode #2 pattern is less longi-
tudinal than that of the top. Mode #5
has a closed nodal ring, in contrast to the
open nodal ring of the top plate.

The mode shapes of the assembled
violin (Figure 3) are different from those
of its free plates (Figures 4 and 5). Be-
cause of the different distributions of
amplitude and curvature in the vibra-
tion deflection patterns of the assembled
instrument, changes in thickness
graduations will affect eigenfrequencies
and mode shapes of the instrument in
very different ways from those of the
free plates.

Mode Shape Modifications

It is important to focus one’s atten-
tion on the mode shapes as one gradu-
ates the top and back plates, for empiri-
cal observation shows that the influence
of thickness graduation on the mode shapes
is clearly larger for the assembled violin
than for the free plates. Consequently,
the thickness graduation technique pro-
vides freedom to modify the sound ra-
diation. At the same time it clearly af-
fects the peak amplitude in the
“acoustical spectrum” but—as was ex-
plained in the previous paper—only
slightly affects the position of the peaks
inthespectrum.

Experiments with a Vibrating Bar
Itis helpful to deal with a simple struc-
ture in order to acquire some experience
and some concepts about dealing with
the distribution of mass and stiffness as
one makes a violin. We chose a simple
beam vibrating under different bound-
ary conditions. The mode shapes were
measured. The beams were 200 x 32 x
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Figure 3 -Mode shapes of the assembled violin after working step 14f

(see Schleske 1996)

" #9:682 Hz

#11:803 Hz

Top plate and back plate (respectively on the left and right hand sides) are shown as
viewed from the outside. Oscillations of the corpus top and corpus back that simulta-
neously expand or contract are defined as cophasal oscillations and are illustrated by

the same patterns.
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#12:957 Hz
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3.2 mm with about 10g weight. They
were excited by a tiny loudspeaker lo-
cated very near the surface at 10% of the
length and fed with a sinusoidal signal
input. Response amplitudes and phases
were measured at 11 points using the
measuring method described in Schleske
(1996).

The graphs of the peak displacements
as a function of length shown in Figure 6
illustrate the mode shapes. The upper
graph shows the first eigenmode with
free boundary conditions; the lower
graph the eigenmode with the ends
hinged (unable to deflect but able to ro-
tate). Case A is the unmodified beam.
Case B has a small mass glued on. In
Case C the thickness in one section was
doubled. This doubles the mass in that
section while greatly increasing the stiff-
ness (stiffness increases approximately
as the cube of the thickness).

The results are very obvious. Both
modifications cause the nodal lines to
move toward the region but for differ-
ent reasons. The added mass decreases
the amplitudes of vibration. The added
stiffness reduces the curvature of the de-
flection curve at the modified location
(and, therefore, the deflections as well).
In the hinged beam the decrease of cur-
vature is very obvious at the right anti-
node, being located in the higher thick-
ness region. The local curvature is
nearly zero in the thick section. (In
principle these mass and stiffness modi-
fications act in the same way both with
other boundary conditions and at
higher modes.)

The effect can be understood by
considering the maximum potential and
maximum kinetic energy of the beam
when vibrating. The maximum
potential energy Vg is one half of the
local bending stiffness EI(x) multiplied
by the square of the local curvature
w"(x) summed up over the length x of
the beam.

Vinax = % [EL(x) s w"*(x)dx

The maximum kinetic energy Timgy is
one half of the local mass m(x) multi-
plied by the square of the local displace-
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Figure - 4 Mode shapes of the free top plate after workingstep 14 (Completed)

#1: 99 Hz #2: 171 Hz

#5: 344 Hz #6: 387 Hz

ment w(x) of vibration squared summed
up over the length x of the beam multi-
plied by the angular frequency w?.

Tmax =  w* [m(x) ® w’(x)dx

#3: 244 Hz #4: 266 Hz

All views from the
outside.  Opposite
phases illustrated by
change of pattern.

#7:421 Hz

Both energies can be calculated if the
eigenfunction (mode shape) over the
length of the beam is known.

Due to the law of minimum energy, a
locally high bending stiffness will create
a small curvature. Otherwise there

Figure -5 Mode shapes of the free back plate after workingstep 13 (Completed)

#6: 435 Hz
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#7: 561 Hz

#8:595 Hz

would be a locally high contribution to
the potential energy. Conversely, if the
beam is reduced in stiffness by modifica-
tion of the plate the curvature and thus
the amplitude of vibration will increase.
The effect is that surrounding nodal
lines are pushed off and both the area of
antinode region and amplitudes of the
antinodes in that less stiff region
increase.

Or in other words: the structure is not
“willing” to be bent in sections of high
stiffness but will “try” to shift the bend-
ing to less stiff sections. The decrease of
the factor of stiffness is compensated by
an increase of the factor of curvature, so
that the sum of the potential energy of
the antinodes in opposite phase is equal.

It is the same principle with the mass
and the kinetic energy. A locally in-
serted mass will decrease the amplitude
at this location in order to avoid too
high a contribution to the kinetic en-
ergy. A locally reduced mass will in-
crease the amplitudes of antinodes in
this area and will push off the surround-
ing nodal lines. Both the size of the area
and the amplitudes of the antinodes in
that reduced mass section increase.
Again the sum of kinetic energy of the
antinodes in opposite phase is equal.

Independent Distribution of Mass
and Stiffness

With regard to the violin as a complex
structure, it is worth mentioning that
the properties of wood give the violin
maker the opportunity to adjust mass
distribution and stiffness distribution
independently in the creation of the vio-
lin plates.

The mass depends on the thickness
and the material properties (density) of
the plate. The bending stiffness of the
plate depends on the material properties
(e. g. Young’s moduli) and on the thick-
ness as well but also on the local orienta-
tion of the fiber elements relative to the
direction of the local mid-surfaces of the
arched plates.

A thin section of a plate in which the
fibers are not cut can have the same stiff-
ness as a thicker section where the fibers
lie at an angle to plate surfaces and are
cut. Both sections may have the same

CASJ Vol 3, No.2 (Series II), November 1996



Figure 6 - Modifications of a thin spruce strip: measurements of eigenmodes of

vibration
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stiffness but a different mass.

On the other hand two sections with
the same thickness graduation can have
the same mass but may have different
stiffnesses if the orientation of the fibers
is different (see Figure 7). This makes it
obvious that thickness graduation,
shape of arching, properties of wood
and orientation of fibers must be taken
into account together. They act asa unit
in giving a certain mass and stiffness dis-
tribution which is responsible for the
tonal fingerprint of the instrument.

Empirical Results

As an example of a mode shape modi-
fication done on a white instrument, the
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left hand side of Figure 8 shows the in-
fluence of the soundpost on the Helm-
holtz resonance (A0Q) and the right hand
side shows the main corpus resonance
(B1). In Figures 8 and 10and 11, the bro-
ken lines indicate the nodal patterns be-
fore the respective treatment as indi-
cated by the legends, the unbroken line
those after treatment. The corpus with
its thin walls “recognizes” the sound-
post as a locally attached stiff spring. At
the Helmholtz resonance the nodal line
of the top plate no longer finds its way
through the right Fhole but is attracted
by this point of high stiffness created by
the soundpost.

This is even more evident with the
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main corpus resonance. The nodal line
is forced to make a detour to the upper
part, through the high stiffness before
finding about the same exit point to con-
tinue through the ribs to the back plate.
The mode shape pattern changed in such
a way that now a minimum curvature
occurs at the high stiffness point of the
sound post location. (The nodal line of
vibration curvature is a good approxi-
mation to the location of the nodal line
of amplitude.) Because of this, a mini-
mum potential energy is saved by this ei-
genmode. The potential energy would
rise dramatically if the high contribu-
tion of soundpost stiffness were con-
nected with the initially high curvature
of vibration.

A similar reaction is the reason for the
asymmetrical quadrupole-like mode
shape described above. As Figure 9
shows, the asymmetrical thickness
graduation (left hand side) creates an
asymmetrical distribution of bending
stiffness. The effect is to distort the usu-
ally symmetrical quadrupole pattern.
The consequence is the increase of radia-
tion efficiency previously described.
The longitudinal nodal line is pushed off
by the decreased bending stiffness, so
that, in the respective integral of the po-
tential energy, the higher contributions
of stiffness are connected with small
contributions of curvature. The low
bending stiffness of the right bout is con-
nected with a high curvature. There-
fore, as the equi-amplitude plot in the
right side of Figure 9 shows, the bout
cannot have high amplitudes.

The same reason causes a modifica-
tion of mode shape #2 as shown in Fig-
ure 10. The upper and lower parts of the
back plate were reduced in thickness
while the center remained stiff. The
nodal line is attracted by the relatively
increased bending stiffness of the center,
so that again the high contributions of
stiffness are connected to small contri-
butions of curvature.

The effect on mode #2 of cutting the
fholes is of interest, as it shows a funda-
mental difference between corpus mode
modifications and free plate mode modi-
fications. The plates joined to form a
corpus are no longer free to act sepa-
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Figure - 7 Distributing stiffness and mass
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rately, for the condition of the one plate
affects the other.

As Figure 10 shows on the left hand
side, the upper nodal line on the back
plate just disappears (and thusa whole an-
tinode in the opposite phase). The reason
isthat the two nodal lines on the top plate

(initially connected through the back
plate) now meet in the top plate.

A further, fairly common, example of
the finding that the condition of the one
plate can affect the other is given in Fig-
ure 11. Itillustrates the modifications of
corpus mode #9. The initial nodal lines

Figure 8 - Modification of two mode shapes

show that both plates had been charac-
terized by a ring mode pattern. By thin-
ning the edges of the back plate the
nodal rings are “cracked” and connected
with each other. At the upper bout of
the back plate the nodal line is pushed
off (obviously by the thin area) and
closes through the top plate. The same
happens on the whole left side of the
back plate.

Consequences for Violin Making

In a recent issue of this Journal, Rodg-
ers (1994) discusses results in the field of
violin acoustics since the 1970’s and
states that there has been “increased ac-
tivity on visualizing and understanding
of the workings of the violin.... The re-
sult was a bewildering number of me-
chanical modes and no clues about
which modes were important in produc-
ing sound and how they might be ad-
justed.” It would be very helpful for the
violin maker if psychoacoustical re-
search gave some clues on how differ-
ences in the “acoustical spectra” of vio-
lins have to be interpreted to do justice
to human sense of hearing.

The current paper gives some clues
about how modes might be adjusted,
but not which modes should be ad-

Helmholtz resonance (AQ)
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Figure 9 - Asymmetrical distribution of amplitudes by asymmetrical thickness

Thickness Graduation of Back Plate

Mode Shape of Corpus Mode #11
(662 Hz)

Principle: Thickness attracts nodal line

justed, or which differences or changes
are particularly recognized by our sense
of hearing. In this respect scientific re-
search could be agreat help for the violin
maker as it would promote the practice
of deliberately designing to achieve se-
lected tonal results.

Tonal Precision Work

As an attempt to put the techniques
described above into practice, the
author has made another violin. Instead
of a tonal aim expressed in words, its
acoustical properties were intended to
agree as well as possible with those of a
given instrument, a concrete physical
goal. Asa reference, the modes of a vio-
lin by a Venetian master, Domenicus
Montagnana, anno 1740, were analyzed.
In the production process of the new
violin both the frequencies and nodal
patterns of the modes were adjusted to
match those of the Montagnana violin.
In Figure 12 the modes of the original in-
strument are compared with the modes
of thetonal copy.

The broken lines are the nodal lines of
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the original violin with a fine pattern il-
lustrating its cophasal antinodes. The
solid lines are those nodal lines for the
tonal copy with a coarse-grained pattern
illustrating its cophasal antinodes. The
agreements of mode shapes of both in-
struments are shown by the overlapping
of the different patterns. The eigenfre-
quencies of the original violin are in
brackets, those of the tonal copy with-
out brackets. The differences of eigen-
frequencies in semitones are given in
italic letters below each mode.

The mode with 268 Hz is the Helm-
holtz resonance. The next mode (337
Hz) with a twisting motion does not ra-
diate efficiently. Next occur two very
similar modes with different frequencies
(367 and 418 Hz). The mode with 475
Hz is the main corpus resonance (B1).
Slightly below there is a mode with a
strong cophasal pumping of the lower
part of the back plate. Finally the Bl
mode is followed by two plate reso-
nances at 625 and 662 Hz.

Comparing the original violin with
the tonal copy, the following points are
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to beemphasized:

+ Every mode in the observed fre-
quency range occurs on both
instruments.

The modes have the same spectral
sequence.

The agreements of eigenfrequencies
amount to a narrow band of be-
tween -0.59 and +0.51 semitones
for the corpus modes (up to 468 and
475 Hz) and of -0.68 and +1.24
semitones for the two following
plate modes of the instruments.
The divergences of nodal patterns
are relatively small, especially at the
lower frequencies. Even at the high
frequencies the type of mode re-
mains the same. Often even in de-
tails the mode shapes are similar.
For example, the nodal patterns of
the main corpus mode (B1,475/468
Hz) on the back plate are closed
through the top plate. (This s a
question of the bending stiffness in
the upper part of the back plate.) In
contrast to this, there exist many in-
struments—such as the Strad model
depicted in figure 3—where the B1
nodal lines on the back plate meet
1N its upper part.

Modal Differences due to Different
Contours
The small amount and nature of
modal differences between the genuine
Montagnana and the tonal copy be-
comes obvious if one compares these
differences to the differences between
two newly made violins having differ-
ent contours, the Montagnana of 1740
(Figure 12) and the Stradivari of 1715
(Figure 3).
+  Themode shapes of the plate modes
above the main corpus resonance
B1 do not match. As for the higher
eigenmodes it is a question of differ-
ent modes.
The eigenmodes that match in
mode shapes show clearly different
eigenfrequencies:

Mode #3 for the Stradivari at 420
Hz corresponds with mode #3 for
the Montagnana at 378 Hz— 1.8
semitones difference
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Figure 10 -Modification of mode shape #2

Nodal lines after workingstep

-------- Nodal lines before workingstep

Jfholes cut

_______ 409 Hz 372Hz

Mode #4 for the Stradivari at 433
Hz corresponds with mode #2 for
the Montagnana at 345 Hz — 3.9
semitones difference.

- The eigenmodes that match in
mode shapes appear in a different
spectral sequences—the Stradivari
mode #4 corresponds with mode #2
inthe Montagnana.

+ The “Montagnana-Instruments”
have corpus modes that do not

Figure 11 - Modification of a mode shape

occur at all during the whole work-
ing process on the Stradivari model,
although drastic modifications of
thickness graduations were done in
this process (see Figure 1in Schleske
1996). Note in particular mode #6
with the cophasal “pumping” lower
bout of the back plate. Further-
more the occurrence of a corpus
mode at 367 having a “twin” close
above at 418 Hz as regards mode

Nodal lines after workingstep
-------- Nodal lines before workingstep

* ® :\..
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shapes seems to be characteristic of
the “Montagnana Instruments.”

The modal differences (up to 1000
Hz) between different violins are very
significant as there are different modes
and sometimes a different spectral se-
quence.

Considering these significant modal
differences, the divergences between the
250 year old genuine Montagnana and
the newly made tonal copy appear to be
small. Because of that it would seem to
suggest that apart from thickness
graduation, other construction parame-
ters like shape of arching, contour and
wood properties are of great impor-
tance. The author carefully considered
these parameters during the working
process on the tonal copy.

Demands on the Violin Maker
In the opinion of the author, creating

a tonal precision copy presents the vio-

lin maker with the following challenges:

- Choice of wood: Asidentical wood
is not available, the wood chosen
should at least have the same speed
of sound in the fiber direction (ratio
of Young’s modulus to density).
With alower speed of sound the tar-
get eigenfrequencies can only be
achieved with thicker plates and
thus with a larger oscillating mass.
This results in an increase of
impedance.

- Construction: A different but com-
parable wood demands calculated
divergences from the construction
of the target instrument. A simple
mechanical copying will come up
with a different tonal result. In
making the Montagnana tonal
copy, the author found that the
tonal copy needed differing plate
thicknesses in various areas. Fur-
thermore, unconventional ways
had to be used—in certain areas vari-
ous small strips had to be glued in.
Philosophy of work: It is not suffi-
cient to tune only the free plates but
rather one must adjust the modes
on the assembled instrument from
the outside (this may require provi-
sionally assembling the instru-
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Figure 12 - Comparison of two violins

Schleske - “Tonal” Copies

(367 Hz)
0,51

450 Hz (437 Hz)
N 0,51

-0,68

601 Hz (625 Hz)

404 Hz (418 Hz)

-0,8

L5

468 Hz (475 Hz)
-0,26,

N

711 Hz (662 Hz)
1,24

Original Instrument (Montagnana 1740): Broken lines indicate nodal lines; fine pattern indicates cophasal antinodes; eigen-

frequencies are in parentheses.

Tonal copy (Schleske 1994): Solid lines indicate nodal lines; coarse pattern indicates cophasal antinodes; eigenfrequencies are

not in parentheses.

The agreements of mode shapes of both instruments are shown by the overlapping of patterns. The differences of eigenfre-

quencies are given in semitones below the modes.
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Schleske - Tonal Copies

ment). The author changed the
order of his working steps by at first
finishing the plates from the inside,
assembling the instrument, and
then finishing the archings and
thicknesses by “tuning” the assem-
bled instrument from the outside
(even with strings on and thus hav-
ing the opportunity of listening to
the sound before the instrument is
finished). It should be noted that
some observations on the edge
treatment of classical master instru-
ments make it seem likely that such
a path was also followed by the Cre-
monese tradition in the 18th cen-
tury (Hargrave 1990).

Varnish: To be qualified to treat the
instrument according to acoustical
criteria, a maker must have a de-
tailed knowledge of the acoustical
effects of primers and varnishes.
Here the main influence concerns
the loss factors of the eigenmodes
(Schleske 1989). In order to match
the damping properties of the tonal
copy with those of the target instru-
ment (having measured the 3 dB
bandwidths of each mode in be-
tween the coats of varnish during
the varnishing procedure) some
coats were deliberately replaced by
another varnish.

Conclusion

The violin is not only a complex
physical structure, but also an expres-
sion of a certain aesthetic idea. This pa-
per has shown how physics can be a
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helpful tool in making a violin. But the
aesthetic quality of a violin finally
achieved (its external expression and its
tonal content) cannot be realized by
physical methods. Aesthetics is not a
subsidiary branch of physics. Natural
science does not offer the appropriate
method of recognition for every topic
and idea. Certainly the musical instru-
ment can be analyzed as a physical body
in the same way that music can be inves-
tigated concerning its acoustical mate-
rial. However the effect of music in its
spiritual idea and the effect of the instru-
ment’s sound and timbre in its aesthetic
idea can only be realized by one who is
willing to sharpen his musical awareness
by learning to listen. Only one who gets
involved with music as someone who is
deeply moved and who has temporarily
forgotten his desire for understanding
will understand itin its idea.

Now I know in part; then I shall
understand fully, even as I have
been fully understood.
I Corinthians 13, verse 12b

®m CAS)

ACKNOWLEDGMENTS

Space and equipment for this work was
provided by Schalltechnisches Beratung-
buro Miller-BBM (Planegg). The author
would like to thank Dr. Ing. habil. Ger-
bard Miiller (Msiller-BBM) for his valuable
encouragement. The author wishes to ex-
press his special thanks to Dipl. Phys.
Helmut A. Miiller for intensive discussion,
support and consultation.

REFERENCES

Cremer, L. 1981. The Physics of the Vio-
lin, MIT Press, Cambridge, 1984,
English translation by J. Allen of
Physik der Geige, Stuttgart, Hirzel
Verlag).

Hargrave, R. 1990. “Classical Edge
Work,” Journal of the Violin Society of
America,vol. 10, no. 2: 49-65.

Hutchins, C. M. 1991. “A rationale for
Bi- Tri-Octave Plate Tuning,” CAS
Journal,vol. 1, no. 8 (series II): 36-7.

Méckel, O. 1926. “Beitrige zur Gei-
genkunde (16th part),” Die Giege, vol.
2,n0.5:97-107.

Molin, N. E., Lindgren, L-E., Jansson,
E. V. 1988. “Parameters of violin
plates and their influence on the plate
modes,” J. Acoustical Society of Amer-
tca,vol.83,no.1:281-291.

Miller, H. A. Skriptum zum Physik-
unterricht an der Geigenbauschule Mit-
tenwald, (unpublished).

Rodgers, O. E. 1994, “The Next Task in
Violin Tuning,” CAS Journal, vol. 2,
no.5 (seriesII): 11-14.

Schleske, M. 1989. “The Influence of
Typical Violin-Varnishes on the
Acoustical Properties of Thin Spruce
Strips,” ISMA ‘89, Mittenwald. Ab-
stract in CAS Journalvol. 1, no. 4 (Ser-
ies II): 38.

Schleske, M. 1996. “Eigenmodes of Vi-
bration in the Working Process of a
Violin,” CAS Journal (May): 2-8.

CASJ Vol. 3, No.2 (Series II), November 1996



